Defective regulation of complement by the sickle erythrocyte: evidence for a defect in control of membrane attack complex formation.

نویسندگان

  • S T Test
  • V S Woolworth
چکیده

A prominent clinical manifestation of sickle cell disease (SCD) is hemolytic anemia. Although complement activation can lead to intravascular hemolysis, its role in the hemolysis of SCD is not known. Because normal red blood cells induced to vesiculate by treatment with calcium and ionophore become sensitive to damage by activated complement and because sickle cells release microvesicles as they circulate, we postulated that sickle cells might also be unusually sensitive to complement-dependent hemolysis. Complement activation is tightly regulated on the membrane of the normal erythrocyte; therefore, defective complement regulation by the sickle cell would be necessary for complement-dependent hemolysis to occur. These studies show a defect in the regulation of membrane attack complex (C5b-9) formation in sickle erythrocytes, particularly in the most dense cells. The defect is characterized by increased binding of C5b-7 and of C9 to denser sickle cells and results in increased susceptibility of sickle cells to C5b-9-mediated (reactive) lysis initiated by either C5b6 or activated cobra venom factor. Among the densest sickle cells, irreversibly sickled cells are especially sensitive to reactive lysis. The similarity of this defect to that previously described in a patient with paroxysmal nocturnal hemoglobinuria suggests that complement-mediated hemolysis could play a role in the anemia of SCD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defective Regulation of Complement by the Sickle Erythrocyte: Evidence for a Defect in Control of Membrane Attack Complex Formation

A prominent clinical manifestation of sickle cell disease (SCD) is hemolytic anemia. Although complement activation can lead to intravascular hemolysis, its role in the hemolysis of SCD is not known. Because normal red blood cells induced to vesiculate by treatment with calcium and ionophore become sensitive to damage by activated complement and because sickle cells release microvesicles as the...

متن کامل

Aberrant regulation of complement by the erythrocytes of hereditary erythroblastic multinuclearity with a positive acidified serum lysis test (HEMPAS).

Susceptibility to hemolysis in acidified serum is a pathognomonic feature of hereditary erythroblastic multinuclearity with a positive acidified serum lysis test (HEMPAS, congenital dyserythropoietic anemia type II). The purpose of the studies reported herein was to determine if aberrant regulation of complement contributes to the susceptibility of HEMPAS erythrocytes to acidified serum lysis. ...

متن کامل

RED CELLS Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait

High frequency of erythrocyte (red blood cell [RBC]) genetic disorders such as sickle cell trait, thalassemia trait, homozygous hemoglobin C (Hb-C), and glucose6-phosphate dehydrogenase (G6PD) deficiency in regions with high incidence of Plasmodium falciparum malaria and casecontrol studies support the protective role of those conditions. Protection has been attributed to defective parasite gro...

متن کامل

P183: Key Function of Complement System in Interactions between Pain and Nociceptors, C5a, and C3a

A part of the immune system that improves (complements) the ability of antibodies and phagocytic cells to clear microorganisms and injured cells from an organism, attacks the pathogen's cell membrane, and encourages inflammation called complement system. It is main part of immune system. Over thirty proteins and protein pieces compose the complement system, including cell membrane receptors, an...

متن کامل

Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells.

Irreversibly sickled cells (ISC's) are circulating erythrocytes in patients with sickle cell disease that retain a sickled shape even when oxygenated. Evidence points to a membrane defect that prevents the return of these cells to the normal biconcave shape. The erythrocyte membrane protein spectrin is believed to help control erythrocyte shape and deformability. Recent studies suggest that nor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 83 3  شماره 

صفحات  -

تاریخ انتشار 1994